Combinação de Modelos Baseados em Transformers para Previsão de Dados Eólicos

De 05 a 09 Outubro 2025, Gramados, RS. SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL- SBPO Doglas Querino dos Anjos Gilberto Reynoso-Meza; Ramon Gomes da Silva;

Agenda da Apresentação

- Contexto e desafios
- Referencial teórico.
- Dados e metodologia.
- Resultados e discussões
- Conclusão e Agradecimentos.

Contexto e Desafios

A ascensão da energia eólica:

- Crescimento acelerado: estimativas de +355 GW de capacidade instalada.
- Brasil: 7^a posição mundial em 2021, com mais de 8.300 turbinas em 695 parques eólicos.

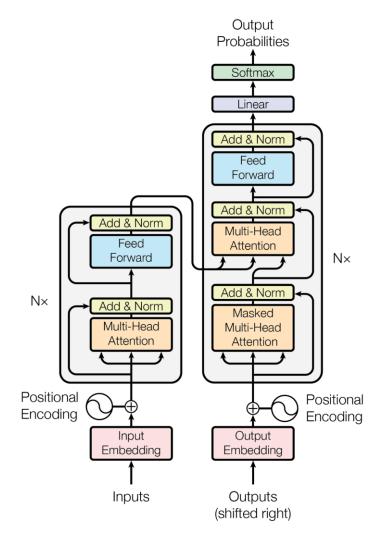
Desafio fundamental:

- Intermitência do vento → compromete a previsibilidade da oferta
- Planejamento do despacho de energia

REFERENCIAL TEÓRICO

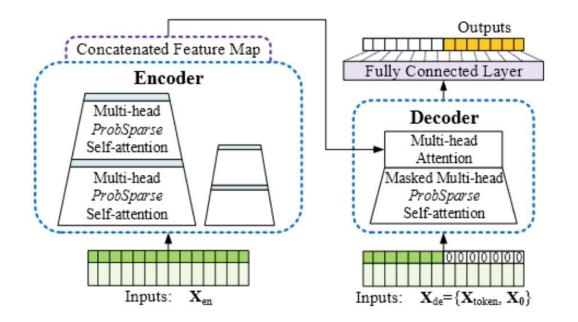
Transformer

- Captura de dependências de longo prazo → identifica relações distantes na série temporal.
- Flexibilidade → adapta-se a diferentes tipos de dados e domínios.



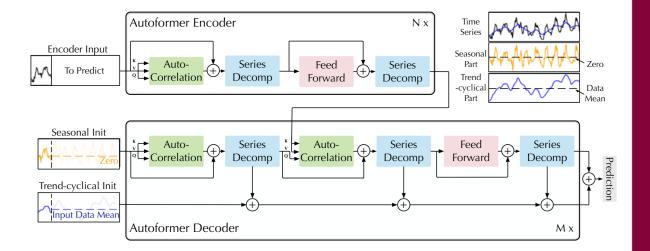
Informer

- ProbSparse Attention \rightarrow reduz a complexidade da atenção de $O(L^2)$ para $O(L \log L)$, mantendo alta precisão.
- **Distilling com convoluções** → encurta sequências longas e remove redundâncias, preservando padrões relevantes.



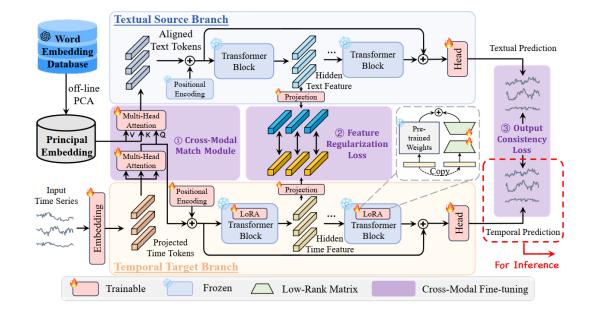
Autoformer

- Decomposition architecture → integra decomposição de séries temporais diretamente no modelo, separando tendência e sazonalidade automaticamente.
- Auto-Correlation Mechanism → substitui a atenção tradicional por autocorrelação.



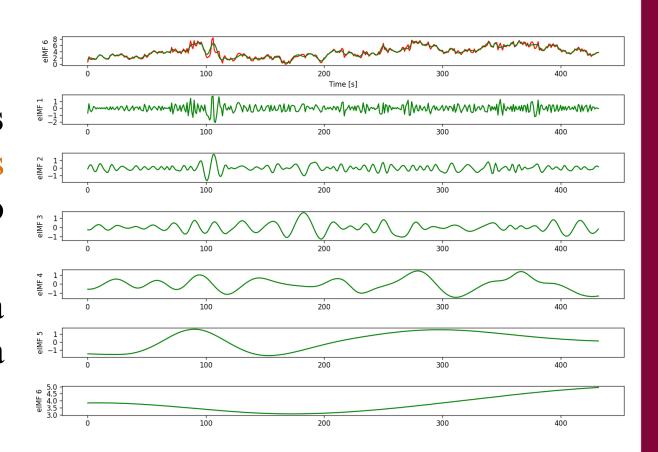
CALF

 Alinhamento multimodal com LLMs pré-treinados → conecta séries temporais a modelos de linguagem usando módulos de correspondência e perdas de regularização.



Empirical Mode Decomposition (EMD) - Denoising

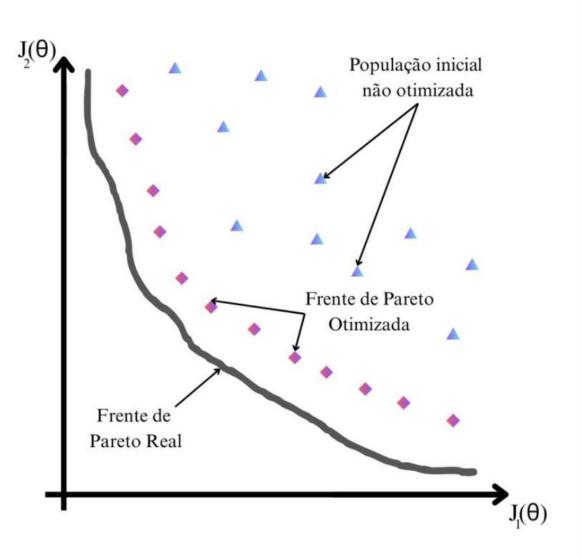
- Decomposição Empírica de Sinais (EMD) → segmenta séries temporais em funções de modo intrínseco (IMFs).
- Ruído em IMF1 → a primeira componente (alta frequência) tende a conter ruído excessivo.



Multi-Objective Optimization Desig (MOOD)

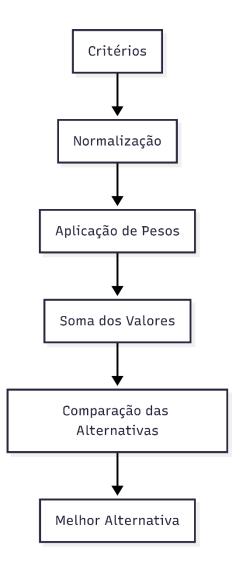
Dividido em 3 etapas:

- Formulação do Problema Multiobjetivo (MOP).
- Aplicação da Otimização Multiobjetivo (MOO).
- Apoio à Decisão Multicritério (MCDM).



SAW (Simple Additive Weighting)

• Método multicritério simples → normaliza os critérios, aplica pesos e soma os valores para comparar alternativas.



DADOS E METODOLOGIA

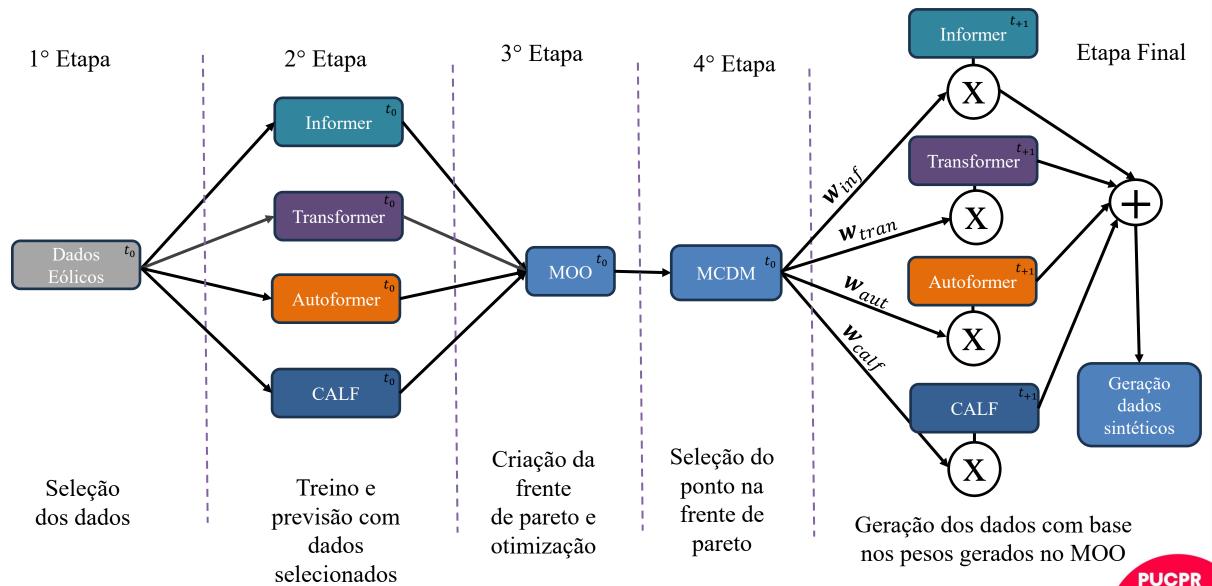
Dados

- Fonte → Dados fornecidos pela UTFPR, no estudo do mapa de potencial eólico da RMC.
- Local → Torre anemométrica da Lapa, entre as cinco torres instaladas.
- **Medições** → Sensores a 30 m coletando velocidade, direção do vento e variáveis meteorológicas (pressão, temperatura e umidade).
- Contexto → Ambiente urbano e semiurbano, com posicionamento estratégico das torres.

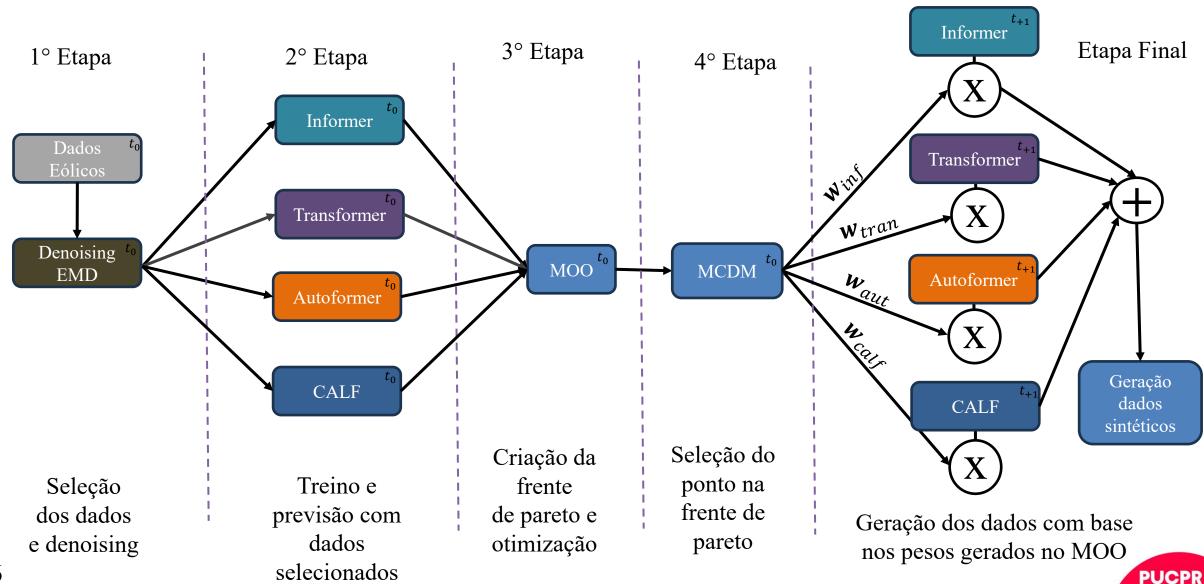
Metodologia Combinação de Modelos MOO

- **Modelos combinados** → Informer, Autoformer, Transformer e CALF.
- Configuração experimental → Janelas deslizantes de 3 dias (432 amostras, 10 min de intervalo), horizontes de 10, 25 e 50 passos, com e sem EMD.
- Treinamento → 100 rodadas por configuração; deslocamento de 1 hora; critério de parada: loss < 0,3 ou 500 epochs.
- **Modelo combinado (MOO)** → NSGA-III, combinação por média ponderada das previsões visando minimizar MAPE e RMSE.
- Seleção de pesos \rightarrow Restrições $0 \le \omega i \le 1$.
- **Avaliação** → Métricas MAPE e RMSE, pontuação de 1 a 5 para comparar modelos individuais e o combinado.

Modelo Combinado MOO Sem Denoising



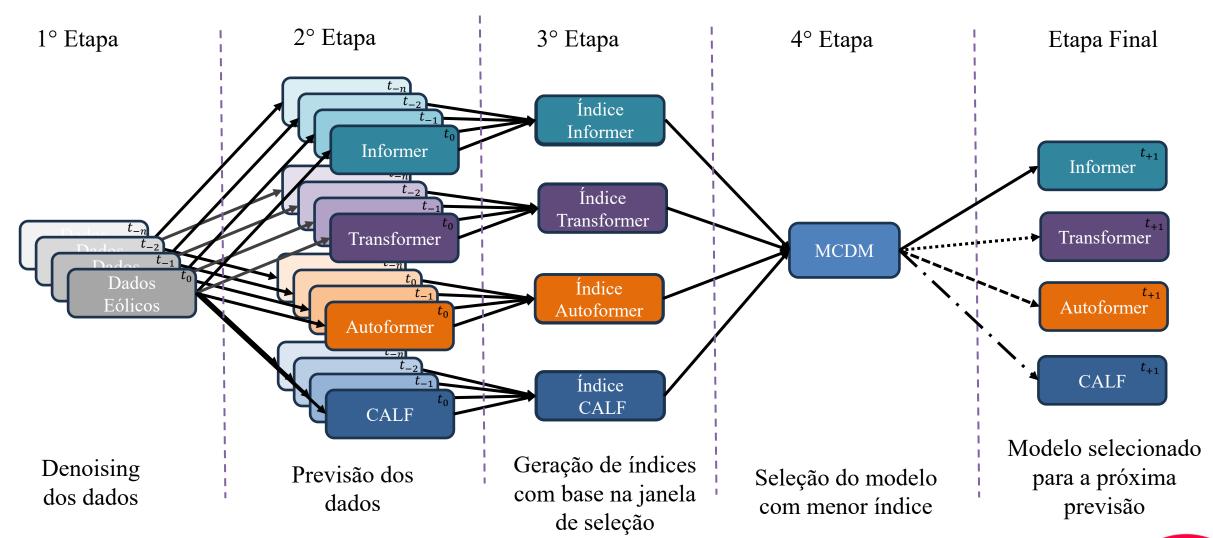
Modelo Combinado MOO Com Denoising



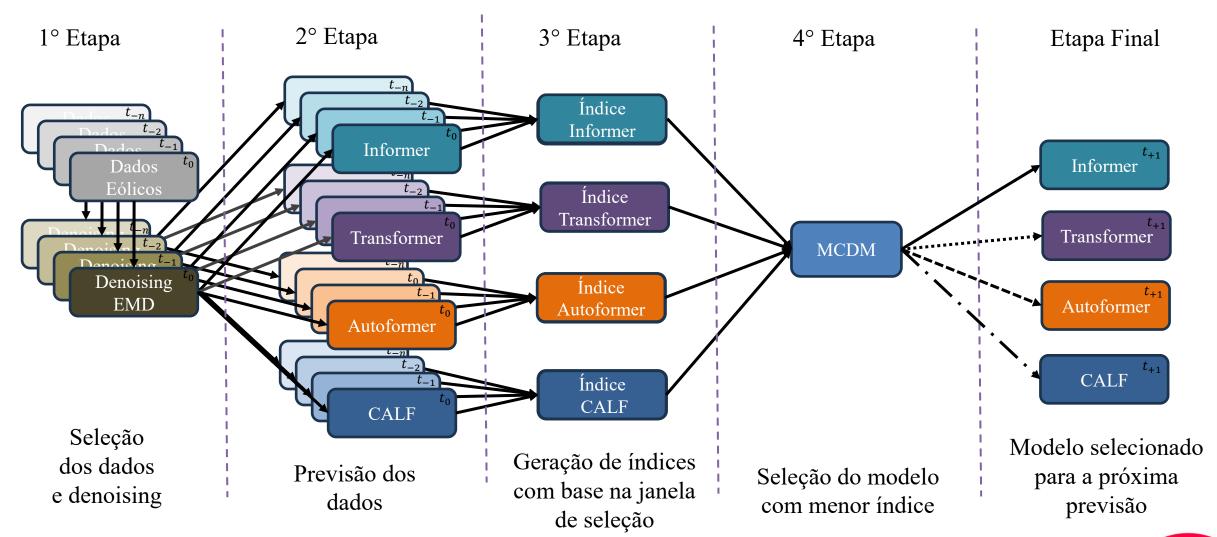
Metodologia Combinação de Modelos SAW

- Critérios de avaliação → MAPE e RMSE dos quatro modelos (Informer, Autoformer, Transformer e CALF).
- Normalização e soma → MAPE e RMSE foram normalizados e somados em janelas móveis de 1, 3 e 7 passos.
- Seleção do modelo → Escolha do modelo com menor soma dos erros normalizados.
- Comparação entre modelos → A escolha em cada janela foi tratada como uma quinta alternativa (modelo SAW).
- **Pontuação padronizada** → Mantida a escala de 1 a 5 por métrica, possibilitando análise robusta de desempenho.

Modelo Combinado SAW Com Denoising



Modelo Combinado SAW Com Denoising



RESULTADOS E DISCUSSÕES

Resultados

MOO:

- Instabilidade individual → modelos variaram na liderança, sem consistência.
- MOO mais estável → combinou previsões, reduzindo oscilações.
- Ranking → MOO ficou em 1º na maioria dos cenários; Informer em 2º, Transformer e
 CALF intermediários, Autoformer teve pior desempenho.

SAW:

- Desempenho superior → diferenciou melhor os modelos, com maior precisão que o MOO.
- Adaptação rápida → escolheu dinamicamente o melhor modelo a cada instante ("surfar a onda").
- Janelas deslizantes → 1 passo teve o melhor resultado, seguido por 3 e 7 passos.

Diferença Percentual Dos Modelos

Modelo combinado MOO							Modelo combinado Multicriterio Janela de 1 passo - MM1P						
Denoising	Janela de previsão	Transf.	Inf.	Auto.	CALF	Combinado MOO	Denoising	Janela de previsão	Transf.	Inf.	Auto.	CALF	Combinado MM1P
SIM	10	9.0%	2.5%	22.4%	11.9%	0.0%	SIM	10	19.5%	16.9%	32.5%	24.6%	0.0%
NÃO	10	4.4%	0.0%	19.5%	8.2%	0.5%	NÃO	10	18.6%	14.0%	27.2%	15.7%	0.0%
SIM	25	12.0%	0.5%	17.0%	13.9%	0.0%	SIM	25	35.8%	27.3%	38.0%	35.9%	0.0%
NÃO	25	11.1%	3.7%	16.9%	9.3%	0.0%	NÃO	25	37.7%	34.6%	42.4%	34.5%	0.0%
SIM	50	12.2%	5.2%	17.8%	22.2%	0.0%	SIM	50	40.7%	36.0%	42.7%	46.3%	0.0%
NÃO	50	8.3%	3.3%	18.7%	14.1%	0.0%	NÃO	50	37.5%	34.2%	44.3%	36.9%	0.0%
Modelo combinado Multicriterio Janela de 3 passos -							Modelo combinado Multicriterio Janela de 7 passos -						
MM3P						MM7P							
Denoising	Janela de previsão	Transf.	Inf.	Auto.	CALF	Combinado MM3P	Denoising	Janela de previsão	Transf.	Inf.	Auto.	CALF	Combinado MM7P
SIM	10	22.2%	18.2%	35.1%	28.2%	0.0%	SIM	10	8.7%	5.9%	23.3%	19.3%	0.0%
NÃO	10	17.7%	10.6%	25.7%	15.1%	0.0%	NÃO	10	20.9%	12.4%	26.1%	17.3%	0.0%
SIM	25	34.3%	24.2%	34.1%	33.4%	0.0%	SIM	25	31.8%	19.4%	30.7%	25.9%	0.0%
NÃO	25	33.2%	26.7%	35.8%	28.4%	0.0%	NÃO	25	28.6%	19.8%	29.8%	17.6%	0.0%
SIM	50	40.3%	33.6%	38.4%	45.8%	0.0%	SIM	50	33.4%	25.2%	28.6%	38.4%	0.0%
NÃO	50	36.7%	32.9%	42.0%	35.6%	0.0%	NÃO	50	28.8%	18.5%	30.3%	23.2%	0.0%

Fonte: Autor (2025)

Resultados com Denoising

- Impacto na acurácia → não houve efeito consistente nos erros de previsão (MAPE e RMSE).
- Vantagem computacional → reduziu o tempo de treinamento, acelerando a convergência dos modelos.

Tempo médio em segundos gasto nos treinos dos modelos								
Denoising	Janela de previsão	Trans.	Inf.	Auto.	CALF			
SIM	10	56	59	93.5	83			
NÃO	10	62	63.5	106.5	109.5			
Diferença j	percentual	9.7%	7.1%	12.2%	24.2%			
SIM	25	59	67	91.5	120.5			
NÃO	25	66.5	80	111.5	148.5			
Diferença j	percentual	11.3%	16.3%	17.9%	18.9%			
SIM	50	55	78	99	115			
NÃO	50	71	92	116	151			
Diferença j	percentual	22.5%	15.2%	14.7%	23.8%			

Fonte: Autor (2025)

Conclusões

- Modelos combinados superam individuais → Aproveitam desempenhos complementares entre arquiteturas.
- MOO → Apresentou maior estabilidade e competitividade, reduzindo oscilações de desempenho.
- SAW → Mostrou adaptação dinâmica, com resultados superiores na maioria dos cenários.
- **Denoising (EMD)** \rightarrow Não impactou a acurácia, mas reduziu o tempo de treinamento.
- Trabalhos futuros → Integração entre MOO e SAW pode ampliar robustez em cenários mais complexos.

Agradecimentos

Em especial a Copel, a CAPES e ao CNPq.

Perguntas?

doglas.anjos@pucpr.edu.br g.reynosomeza@pucpr.br ramon.gsilva@pucpr.br

De 05 a 09 Outubro 2025, Gramados, RS. SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL- SBPO

