

Beta-hCG test demand forecasting using stacking ensemble-learning and machine learning approaches

RG da Silva, V Tafoya-Martinez, FD Silva, MA Cardoso, EB Severo, CQ Cardoso, MHDM Ribeiro, VC Mariani, and LS Coelho

PUCPR GRUPO MARISTA

International Conference on Production Research Americas - ICPR 2022

AGENDA

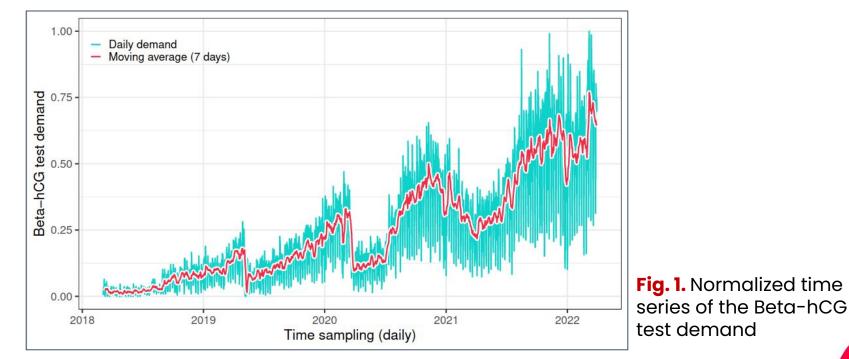
- Introduction
- Objective
- Dataset description
- Methodology
- Results
- Conclusion
- References

INTRODUCTION

- Demand forecasting is essential for decision-making, since these forecasts are necessary inputs for strategic management decisions.
- Hilab is a health-tech company that provides laboratory tests through Point-of-Care testing (POCT) platform and POCT equipment using internet of things technology [1].
- The pregnancy test (Beta-hCG test) is one of the leading laboratory tests that Hilab provides.
- Forecasting the Beta-hCG test demand as accurately as possible is crucial for many areas of the company.

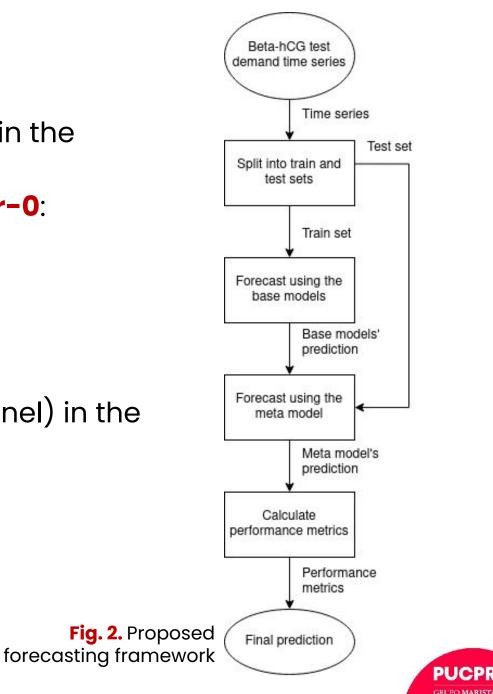
INTRODUCTION

- Due to these factors, forecasting sales is a **challenging task**.
- A hybrid approach that combines Stacking ensemble-learning (STACK) with diverse machine learning (ML) models can handle the time series for multi-step ahead forecasting.


OBJECTIVE

- The objective of this study is to propose a hybrid framework to forecast the Beta-hCG test demand, using a multi-step ahead strategy (one, fifteen, thirty, forty-five, and sixty days ahead).
- The proposed model is composed by STACK and diverse ML approaches.

DATASET DESCRIPTION


- The data consists of the historical daily Beta-hCG test demand from March 11th, 2018, to March 31st, 2022.
- Since the dataset is from a private company, it was rescaled using min-max normalization to anonymize the actual data.
- The moving average of 7 days of the demand was calculated and used as the objective of the forecasting process.

PUCPR GRUPO MARISTA

METHODOLOGY

- The dataset is divided into train and test sets in the proportion of 70 and 30%, respectively.
- Four different algorithms in the STACK's layer-0:
 - GLM (Generalized Linear Model).
 - **GPR** (Gaussian Process Regression).
 - **PLS** (Partial Least Squares).
 - **RIDGE** (Ridge Regression).
- **SVR** (Support Vector Regression with linear kernel) in the **STACK's layer-1**.
- Performance measures:
 - MAE (Mean absolute error).
 - MAPE (Mean absolute percentage error).
 - **RMSE** (Root mean squared error).

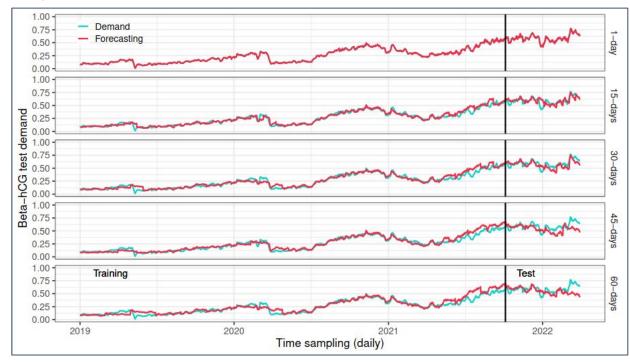

RESULTS

Table 1. Performance metrics of the compared andproposed models

Forecasting	Performance	GPR	GLM	PLS	DIDCE	STACK.
horizon	metrics	GPR	GLM	PL3	RIDGE	STACK.
1 day	MAE	0.0121	0.0118	0.0330	0.0120	0.0117
	MAPE	2.53%	2.50%	6.84%	2.51%	2.47%
	RMSE	0.0162	0.0151	0.0439	0.0160	0.0150
15 days	MAE	0.0421	0.0403	0.0516	0.0422	0.0405
	MAPE	8.41%	8.08%	10.50%	8.39%	8.14%
	RMSE	0.0577	0.0559	0.0670	0.0580	0.0562
30 days	MAE	0.0532	0.0513	0.0679	0.0530	0.0501
	MAPE	10.91%	10.59%	13.76%	10.79%	10.42%
	RMSE	0.0646	0.0630	0.0813	0.0646	0.0619
45 days	MAE	0.0718	0.0707	0.0849	0.0728	0.0674
	MAPE	14.27%	14.06%	16.94%	14.26%	13.71%
	RMSE	0.0862	0.0850	0.0998	0.0867	0.0821
60 days	MAE	0.0708	0.0716	0.0816	0.0713	0.0730
	MAPE	14.25%	14.42%	16.32%	14.10%	14.52%
	RMSE	0.0916	0.0928	0.1030	0.0922	0.0942

Note: Bold values represent the best performance measure.

Fig. 3. Observed versus predicted daily Beta-hCG test demand

CONCLUSION

- This study proposed a hybrid framework by using STACK and ML models to forecast daily Beta-hCG test demanda multi-step ahead.
- The **STACK** was coupled with **GLM**, **GPR**, **PLS**, and **RIDGE** as base models and **SVR** as meta model.
- Indeed, the STACK-based approaches had a better performance than compared models in most forecasting horizons.
- For future works
 - Adopt different models in the layers of the STACK approach.
 - Use a signal decomposition approach to preprocess the time series.
 - Employ optimization approaches to tune hyperparameters of forecasting models.

REFERENCES

[1] Gasparin, A.T., Araujo, C.I.F., Schmitt, P., Cardoso, M.R., Perussolo, M.C., de Jesus, T.C.S., Santiago, E.B., Silva, I.L.R., de Sousa, R.G., Teng, F.Z., Severo, E.B., Ribeiro, V.H.A., Cardoso, M.A., Silva, F.D., de Araujo Perazzoli, C.R., de Holanda Farias, J.S., de Almeida, B.M.M., J´unior, S.R.R., Figueredo, M.V.M.: Hilab system, a new point-of-care hematology analyzer supported by the Internet of Things and Artificial Intelligence. Scientific Reports 12(1) (2022)

ACKNOWLEDGMENTS

Apoio ao Desenvolvimento Científico e Tecnológico do Paraná

Thank you!

Any questions?

Beta-hCG test demand forecasting using stacking ensemble-learning and machine learning approaches

RG da Silva, V Tafoya-Martinez, FD Silva, MA Cardoso, EB Severo, CQ Cardoso, MHDM Ribeiro, VC Mariani, and LS Coelho

PUCPR GRUPO MARISTA

International Conference on Production Research Americas - ICPR 2022