

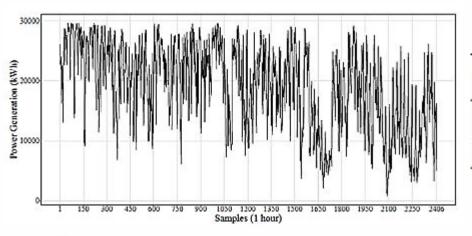
An Improved Ensemble Learning Model for Multi-Step Ahead Wind Power Generation Forecasting

COBEM2021-0166

Matheus Henrique Dal Molin Ribeiro^{1,2}, Ramon Gomes da Silva¹, Sinvaldo Rodrigues Moreno⁴, Viviana Cocco Mariani^{3,4}, e Leandro dos Santos Coelho^{1,4}

¹ Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUC-PR)

² Department of Mathematics, Federal University of Technology - Parana (UTFPR)


³ Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Parana (PUC-PR)

⁴ Department of Electrical Engineering, Federal University of Parana (UFPR)

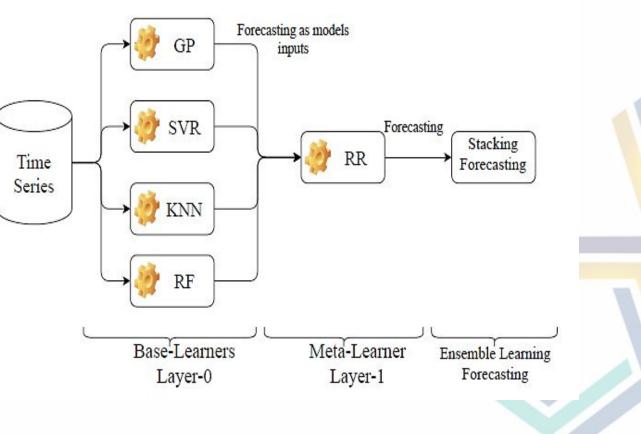
Wind Power Data Set

- 15 Wind Turbines (WT);
- 2000kW rated power each;
- Rotor Diameter 90m;
- Rotor height 80m;
- August, 1st up to November, 20th, 2020;
- Installed Capacity 30000kW.

Table 1: Statistical indicators of wind power generation time series.												
Dataset	Statistical Indicator											
	Minimum	Median	Mean	Maximum	Standard Deviation	# Samples						
Whole	810.88	20093.76	19079.59	29627.22	6889.61	2406						
Training	2108.69	22335.07	21100.39	29627.22	6000.78	1684						
Test	810.88	14200.27	14366.25	29146.23	6518.65	722						

Proposed Method

Stacking Learning Ensemble

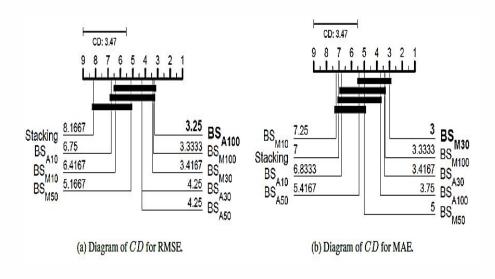

- Base Learners Layer-0:
 - Gaussian process (GP);
 - Support Vector Regression with linear kernel (SVR);
 - k-Nearest Neighbor (kNN); and
 - Random Forests (RF).
- Meta Learner Layer-1
 - Ridge Regression (RR)
- Forecasting Horizon
 - 1 up to 12 hours-ahead
- Metrics
 - Root Mean Squared Error (RMSE);
 - Normalized RMSE (nRMSE);
 - Mean Absolute Error (MAE); and
 - Theil's U Index (UT)

Results and Conclusion

	Table 2: Performance measures of compared models for wind power generation forecasting.						Table 3: Performance measures of compared models for wind power generation forecasting.														
Forecasting	Criteria -	Stack	Stack + 10 Bootstraps Stack + 30 Boot		0 Bootstraps	aps Stack + 50 Bootstraps		Stack + 100 Bootstraps		Forecasting	Criteria -	Stack	k Stack + 10 Bootstraps		Stack + 30 Bootstraps		Stack + 50 Bootstraps		Stack + 100 Bootstraps		
Horizon		Original	Average	Median	Average	Median	Average	Median	Average	Median	Horizon	Cinena -	Original	Average	Median	Average	Median	Average	Median	Average	Median
1	RMSE	2828.28	3263.56	3269.56	3282.41	3281.12	3249.62	3247.45	3234.27	3230.37	7	RMSE	5270.26	4617.50	4628.60	4533.12	4542.79	4580.91	4594.23	4581.73	4559.18
	nRMSE	19.69%	22.72%	22.76%	22.85%	22.84%	22.62%	22.60%	22.51%	22.49%		nRMSE	36.69%	32.14%	32.22%	31.55%	31.62%	31.89%	31.98%	31.89%	31.74%
	MAE	2143.38	2658.33	2654.99	2666.80	2667.84	2650.65	2645.63	2624.77	2616.27		MAE	4330.83	3815.19	3820.15	3715.38	3724.50	3770.34	3772.40	3756.30	3738.98
	UT	0.1757	0.2088	0.2082	0.2104	0.2096	0.2084	0.2073	0.2073	0.2061		UT	0.3090	0.2888	0.2884	0.2827	0.2831	0.2856	0.2858	0.2855	0.2836
2	RMSE	3619.77	3627.37	3633.27	3619.22	3601.62	3615.68	3614.11	3589.65	3587.29	8	RMSE	5642.22	4944.71	4947.58	4886.27	4876.31	4885.22	4893.83	4871.47	4881.43
	nRMSE	25.20%	25.25%	25.29%	25.19%	25.07%	25.17%	25.16%	24.99%	24.97%		nRMSE	39.27%	34.42%	34.44%	34.01%	33.94%	34.00%	34.06%	33.91%	33.98%
	MAE	2794.92	2948.79	2953.97	2950.43	2935.89	2953.71	2949.19	2927.37	2919.55		MAE	4623.75	4078.54	4088.49	3976.37	3977.77	4012.46	4013.49	4001.76	4010.42
	UT	0.2228	0.2309	0.2305	0.2309	0.2293	0.2308	0.2296	0.2290	0.2279	10.0	UT	0.3342	0.3080	0.3072	0.3073	0.3062	0.3060	0.3054	0.3049	0.3046
3	RMSE	3965.14	3843.91	3831.81	3847.81	3832.02	3851.32	3850.22	3819.64	3816.36	9	RMSE	5630.98	5013.70	5027.65	4976.59	4989.36	5008.38	5020.91	5021.83	5018.92
	nRMSE	27.60%	26.76%	26.67%	26.78%	26.67%	26.81%	26.80%	26.59%	26.56%		nRMSE	39.20%	34.90%	35.00%	34.64%	34.73%	34.86%	34.95%	34.96%	34.94%
	MAE	3106.56	3150.51	3149.94	3133.94	3112.65	3156.10	3149.30	3121.94	3116.57		MAE	4572.41	4131.90	4157.31	4102.29	4107.94	4132.87	4129.94	4139.83	4131.96
200	UT	0.2442	0.2446	0.2431	0.2457	0.2443	0.2456	0.2448	0.2436	0.2426	2010	UT	0.3334	0.3106	0.3105	0.3103	0.3101	0.3110	0.3110	0.3122	0.3111
4	RMSE	4299.16	4038.70	4020.25	4036.19	4021.39	4031.32	4024.26	4017.22	4015.05	10	RMSE	5672.43	5088.86	5110.29	5022.55	5029.13	5042.02	5058.06	5033.94	5038.41
	nRMSE	29.93%	28.11%	27.98%	28.09%	27.99%	28.06%	28.01%	27.96%	27.95%		nRMSE	39.48%	35.42%	35.57%	34.96%	35.01%	35.10%	35.21%	35.04%	35.07%
	MAE	3439.89	3307.92	3306.61	3281.34	3268.64	3303.48	3291.35	3287.81	3285.06		MAE	4565.26	4213.07	4237.94	4134.96	4142.64	4171.57	4183.56	4159.95	4162.16
	UT	0.2655	0.2571	0.2558	0.2574	0.2561	0.2576	0.2559	0.2563	0.2554	1000	UT	0.3336	0.3136	0.3145	0.3116	0.3116	0.3105	0.3105	0.3106	0.3100
5	RMSE	4745.92	4311.46	4298.85	4253.71	4237.61	4262.42	4267.57	4275.31	4279.48	11	RMSE	5851.22	5206.03	5193.34	5132.27	5137.94	5146.48	5162.33	5150.96	5167.22
	nRMSE	33.04%	30.01%	29.92%	29.61%	29.50%	29.67%	29.71%	29.76%	29.79%		nRMSE	40.73%	36.24%	36.15%	35.72%	35.76%	35.82%	35.93%	35.85%	35.97%
	MAE	3753.23	3563.41	3553.66	3485.50	3472.47	3524.86	3523.52	3523.55	3519.53		MAE	4703.26	4275.71	4266.79	4194.70	4206.75	4227.47	4238.53	4217.68	4229.88
	UT	0.2857	0.2705	0.2694	0.2679	0.2666	0.2676	0.2672	0.2679	0.2673		UT	0.3352	0.3201	0.3175	0.3177	0.3172	0.3158	0.3158	0.3166	0.3166
6	RMSE	4980.08	4431.71	4422.91	4407.80	4396.45	4405.82	4414.56	4380.39	4381.94	12	RMSE	6004.80	5419.08	5385.52	5469.57	5473.68	5380.41	5404.83	5410.85	5424.00
	nRMSE	34.67%	30.85%	30.79%	30.68%	30.60%	30.67%	30.73%	30.49%	30.50%		nRMSE	41.80%	37.72%	37.49%	38.07%	38.10%	37.45%	37.62%	37.66%	37.76%
	MAE	4068.44	3629.18	3630.24	3600.70	3583.04	3613.53	3615.79	3588.88	3580.12		MAE	4968.50	4470.93	4451.70	4486.47	4484.83	4413.89	4436.98	4446.02	4451.88
	UT	0.3048	0.2845	0.2830	0.2844	0.2834	0.2834	0.2831	0.2813	0.2807		UT	0.3569	0.3424	0.3397	0.3476	0.3480	0.3410	0.3413	0.3424	0.3423
																				1	

Table 4: Frequency distribution of best results according to the compared methods.

Aggregation	Stacking	Stacking + 10 Bootstraps	Stacking +30 Bootstraps	Stacking +50 Bootstraps	Stacking + 100 Bootstraps	Total	
23	14.58%	-	828	2	2	14.58%	
Average	-	0.00%	29.17%	6.25%	8.33%	43.75%	
Median	12	2.08%	12.50%	2.08%	25%	41.67%	
Total	14.58%	2.08%	41.67%	8.33%	33.33%	100.00%	


Mechanical Engineering

Results and Conclusion

- Accuracy and Forecasting Horizon:
 - In 85.42% of all comparisons, the stacking combined with bagging ensemble has better accuracy than the stacking ensemble learning model;
 - For one-hour-ahead forecasting, the stacking ensemble learning achieves forecasting errors lower than the combination of stacking with bagging ensemble approach according to all performance criteria;
 - These two approaches have competitive results concerning the forecasting horizons of two and three-hours-ahead;

- Bootstrapping Samples
 - Better forecasting results regarding the performance measures are achieved when
 30 bootstrap samples are considered in the ensemble structure, followed by 100, 50, and 10;
- Aggregation strategy
 - Similar accuracy

