
ENC-2020-0400

Wind energy multi-step ahead forecasting based on variational mode decomposition

R G da Silva, M H D M Ribeiro, S R Moreno, V C Mariani, and L S Coelho

The authors would like to thank the National Council of Scientific and Technologic Development of Brazil - CNPq (Grants number: 307958/2019-1-PQ, 307966/2019-4-PQ, 404659/2016-0-Univ, 405101/2016-3-Univ), PRONEX 'Fundação Araucária' 042/2018, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001 for financial support of this work.

Wind energy multi-step ahead forecasting based on variational mode decomposition

- Introduction
- Dataset
- Methodology
- Results
- Conclusion
- Acknowledgments

Wind energy multi-step ahead forecasting based on variational mode decomposition

Introduction

Wind energy has been increasing its operation in the energy matrix in the last decades in many countries around the world.

Even in Brazil, whose electrical power system is majority composed by hydroelectric systems, the wind energy already has a great parcel of the national energy matrix.

The wind energy generation supplies 88.5 million people and represents 17% of the energy consumed in National Interconnected System.

Wind energy multi-step ahead forecasting based on variational mode decomposition

Introduction

Wind energy is classified as an intermittent source, due to nonlinear behavior and fluctuations

Forecasting wind energy as accurate as possible is a challenge

Variational mode decomposition (VMD) can handle the time series Diverse artificial intelligence (AI) models for multi-step ahead forecasting

Wind energy multi-step ahead forecasting based on variational mode decomposition

Introduction

Objective

- To develop a decomposition framework for wind energy forecasting multi-step ahead (30 minutes, 1 and 2 hours ahead).
- The proposed model is composed by VMD and heterogeneous Al approaches.

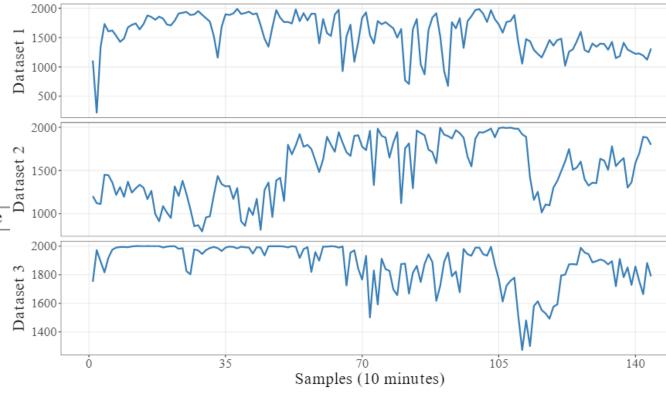
Wind energy multi-step ahead forecasting based on variational mode decomposition

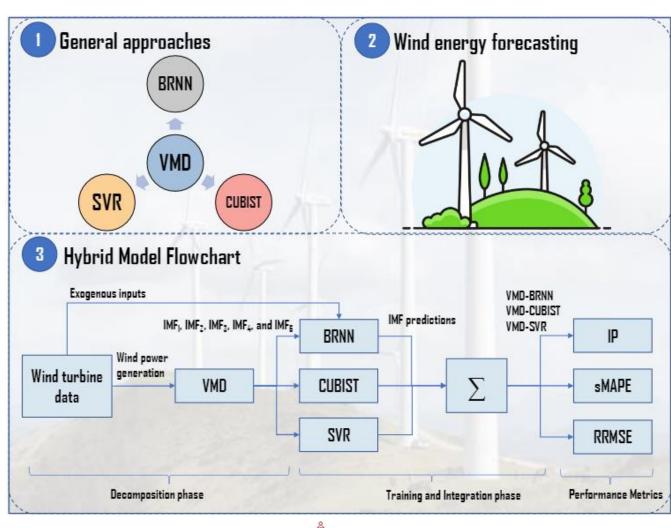
Dataset

- Datasets comprises the days 23rd, 24th, and 26th August 2017, respectively.
- There are **144 samples** for each dataset.

Table 1. Output and inputs of the system

Туре	Description	Unit Measure
Output	Power	kW
Input	Generator Bearing Temperature	Celsius
Input	Generator Bearing 2 Temperature	Celsius
Input	Generator Speed	RPM
Input	Wind Speed	m/s
Input	Absolute Wind Direction	Degrees
Input	Nacelle Direction	Degrees
Input	Ambient Temperature	Celsius




Figure 2. Datasets for August 23rd, 24th, and 26th, 2017

Wind energy multi-step ahead forecasting based on variational mode decomposition

Methodology

- VMD decomposed the data into 5 components
- Three different algorithms:
 - **BRNN** (Bayesian Recurrent Neural Network)
 - **CUBIST** Regression.
 - **SVR** (Support Vector Regression with Linear kernel)
- Performance measures:
 - **RRMSE** (Relative root mean square error)
 - **SMAPE** (Symmetric mean absolute percentage error)

Wind energy multi-step ahead forecasting based on variational mode decomposition

Results

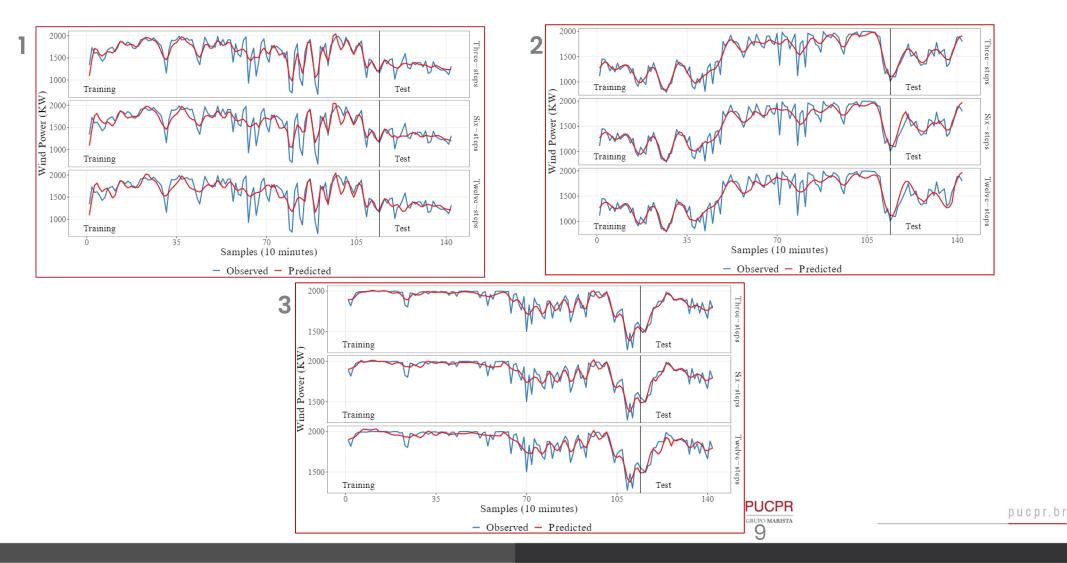

Dataset	Forecasting	Criteria				Model		
	Horizon	Criteria	BRNN	CUBIST	SVR	VMD-BRNN	VMD-CUBIST	VMD-SVR
1	Three-steps	RRMSE	21.96%	17.60%	22.01%	8.63%	7.35%	18.08%
		sMAPE	22.03%	16.70%	23.22%	7.39%	5.86%	18.13%
	Six-steps	RRMSE	20.94%	17.60%	22.25%	13.07%	8.70%	18.44%
		s MAPE	20.47%	16.70%	23.61%	11.51%	6.57%	18.46%
	Twelve-steps	RRMSE	20.56%	17.60%	22.28%	17.65%	10.53%	18.72%
		s MAPE	19.94%	16.70%	23.63%	15.35%	7.79%	18.76%
2	Three-steps	RRMSE	17.17%	14.38%	10.84%	5.51%	5.34%	8.78%
		s MAPE	12.89%	11.08%	9.18%	4.81%	4.51%	6.59%
	Six-steps	RRMSE	17.55%	14.38%	11.00%	8.07%	7.51%	12.72%
		s MAPE	13.22%	11.08%	9.21%	6.89%	6.39%	10.21%
	Twelve-steps	RRMSE	17.85%	14.38%	11.02%	12.60%	9.20%	13.19%
		s MAPE	13.34%	11.08%	9.25%	10.32%	7.59%	10.79%
3	Three-steps	RRMSE	17.71%	4.56%	7.11%	3.09%	2.96%	5.35%
		s MAPE	14.01%	3.59%	5.20%	2.48%	2.34%	4.84%
	Six-steps	RRMSE	15.57%	8.73%	7.40%	5.55%	3.16%	5.18%
		s MAPE	12.20%	7.87%	5.43%	4.48%	2.45%	4.70%
	Twelve-steps	RRMSE	14.84%	10.15%	7.39%	7.79%	4.04%	5.13%
		sMAPE	11.79%	8.22%	5.43%	6.13%	3.16%	4.67%

Table 2. Performance measures of the single and decomposed models

Wind energy multi-step ahead forecasting based on variational mode decomposition

Results

Wind energy multi-step ahead forecasting based on variational mode decomposition

Conclusion

- This study proposed a decomposition model by using VMD and AI models to forecast Wind Energy multi-step ahead.
- The VMD was coupled with BRNN, CUBIST, and SVR as forecasting models.
- Indeed, the VMD-CUBIST approach had a better performance than compared models in all forecasting horizons.

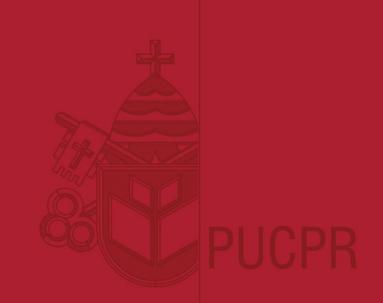
For future works

- Coupling stacking ensemble learning approach.
- Adopting different signal decomposition approaches.
- Optimizing the hyperparameters of the forecasting models by using multiobjective optimization.

Wind energy multi-step ahead forecasting based on variational mode decomposition

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Apoio ao Desenvolvimento Científico e Tecnológico do Paraná



Thank you!

Any questions?

