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Forecasting epidemiological time series based on
decomposition and optimization approaches
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Introduction

Meningitis is an inflammation of the meninges,
membranes that surround the brain and spinal cord;

In Brazil, meningitis is considered an endemic disease.

In 2018 have 15,000 cases of meningitis and 3,000
resulted in death;

Forecasting meningitis cases allows to develop a strategic
planning;

Due to chaotic behavior, through the hybridization of
ensemble, decomposition and optimization approaches is
possible to build an efficient forecasting model.
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Objective

* This paper proposes a new hybrid approach that combines
Ensemble Empirical Mode Decomposition, Quantile Random
Forest based ensemble and Multi-Objective Optimization to
forecast Meningitis Cases one-month ahead in

* Para (PA)
* Parana (PR)
* Santa Catarina (SC)




Dataset

* The data set from DATASUS website; [ .,,.o,,.,gﬁlﬁf'gsi

http://tabnet.datasus.gov.br/cgildeftohtm.exe?sinannet/meningite/bases/meninbrnet.def & winistério da saide

* Monthly meningitis cases from 2007 to 2018 recorded;




|2 years

D ataset (monthly measures)

Brazil STATISTICAL MEASURES FOR THE MENINGITIS NOTIFIED CASES NUMBER
™ ¢, FOR ALL STATES.

Description | n Min  Mean
All data 14 37.54
Training 14 37.02
Test 12 25 43.33
All data 63 141.63
Parana Training 63 142.15
Test 12 97 135.92
Santa All data 35 70.68
Catarina | Training 35 70.39
Test 12 49 73.92

tifications
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Augmented Dickey-Fuller test
PA, PR, SC series
(DF =-5.35 --3.41, p-value > 0.05).

Seasonality in the data (Kruskal-Wallis test)

PA and SC series: there is  evidence of seasonality
T % * 3 e % sPEl PR state series : evidence of seasonality.
Autocorrelations (ACF) for PA (A), PR (B) and SC (C) states




Methodology

Ensemble Empirical Mode
Decomposition (EEMD)

This approach consists of sifting an ensemble of
white noise-added signal (data) and treats the

. mean as the final true result.

Empirical Mode :
» Hilbert Spectrum

Decomposition In this sense, it is performed the decomposition of

(EMD) (HS) time series signal with objective to extract the
coexisting oscillatory functions, named IMF
(intrinsic mode functions) and residual
component, from original data.

Studies on its properties:
decomposing white noise

N. E. Huang et al., “The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis,” Proc.

Roy. Soc. London, 454A, pp. 903-995, 1998.
Z.Wu and N. E. Huang, “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method,” Advances in Adaptive Data

Analysis,Volume |, No. |, pp. 1-41,2009.


https://scholar.google.com/scholar?oi=bibs&hl=en&cites=13856483958158637209
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=15744210250638435928

Methodology

Quantile Random Forest (QRF)

It provides information about the full conditional distribution of the
response variable, not only about the conditional mean.

Quantile random forests give a non-parametric and accurate way of
estimating conditional quantiles for high-dimensional predictor
variables.




Methodology

Non-Dominated Sorting Genetic
Algorithm (NSGA-II)

NSGA-Il procedure has three features:
— It uses an elitist principle

— It emphasizes non-dominated solutions.

— |t uses an explicit diversity preserving mechanism

Non-dominated Crowding distance
sorting sorting
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K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

https://ieeexplore.ieee.org/document/996017




Methodology

Roadmap of hybrid framework

Training each component Performance
In this step performance
Each component 1s trained by QRF measures are computed
model. for train and test sets.

0O)O\VOJO\O

EEMD Multi-Objective Procedure Final Decision
Raw data are decomposed in .
IMFs and residual components, MOO is used to find the non-dominated set of Best model is find based
and them are split in training and weights to combine the components. In sequence on best set of performance
test set. TOPSIS finds the adequated weights measures

IMFs: intrinsic TOPSIS: Technique for Order
mode functions Preference by Similarity to Ideal Solution
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Methodology
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Performance measures
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Statistical tests

Friedman test and Nemenyi test post-hoc

critical difference
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(c) Decomposed series for SC state.
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(b) Decomposed series for PR state.

Results
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(a) Decomposed series for PA state.
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CONTROL HYPERPARAMETERS (mitry) EMPLOYED IN EACH MODEL.

Component/Model
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WEIGHTS ADOPTED FOR EACH IMF AND RESIDUAL IN THE SIGNAL

REECONSTRUCTION.

State 61 Ho Ha 64 0z
PA 1.1020  1.0409 1.0151 1.0126 1.0146
PR 1.0904 1.0214 1.0143 0.9798 0.9938
SC 1.0691 1.0162 09118 1.1994 0.9892




Performance measures

R e S u I t S PERFORMANCE MEASURES ADOPTED IN THE MODELS EVALUATION.
Training set

State | Measure | EEMD-QRF  EEMD-QRE-MOO  QRF

RMSE 1.3550 1.0825 3.6506

PA R2 0.9882 0.9893 0.8919

sSMAPE 2.57% 2.08% 4.19%

RMSE 1.0243 3.6518 7.6555

PR R? 0.9867 0.9901 0.8552

STANDARD DEVIATION FOR MODELS SE FOR TEST SET. sMAPE 1.93% 2.03% 2.47%
RMESE 1.043% 1.4362 7.0872

SC R 0.9148 0.9317 0.8552

State | EEMD-QRF EEMD-QRF-MOO QRF SMAPE 6 50% 5510 4.04%

PA 1.0500 0.9902 6.0696 Test set

PR 71544 2.1542 7.2229 RMESE 6.0690 6.0346 12.7777
PA R 0.6693 0.6751 0.0369

SC 1.6042 1.4264 4.3714 sSMAPE 11.73% 11.57% 23.54%
RMSE 17.5855 17.3518 31.8764

PR R? 0.7323 0.7378 0.1869

sSMAPE 8.24% 7.97% 15.28%

RMSE 8.1240 0.6220 15.4407

SC R2 0.8472 0.8628 0.1355

sSMAPE 9.82% 12.03% 19.73%




3004 — EEMD-QFF -- EEMD-QRF-MOO — Observed - QFF

Results
observed x predicted values
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QRF ———

EEMD-QRF

EEMD-QRF

Results

(a) CD diagram for PA state.

(b) CD diagram for PR state.

EEMD-QRF-MCO

EEMD-QRF-MOOC

QRF — EEMD-QRF
EEMD-QRF-MOO

(c) CD diagram for SC state

Friedmann Test = }(22 =12.51-14.97, p—value < 0.05

CD =1.1088, 1.1722 and 1.1722 for PA, PR and SC.

PR and PA states EEMD-QRF-MOO shows
lower errors than EEMD-QRF
but no statisical significant.




Conclusion

A hybrid framework combining EEMD, QRF and MOO was proposed;

EEMD was employed to decompose the series, QRF to forecast each obtained component
and MOO to find weights for these components;

One-month ahead forecasting the meningitis cases in PA, PR and SC states was studied;

EEMD-QRF-MOQO is competitive with 2 cases better than EEMD-QRF and all cases better
than QRF model.

Decomposition and optimization allow to enhance models performance;
For future works is intend

¢ Adopt different combinations of models for EEMD components.

* Increasing the number of steps ahead to forecasting.
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Comments: HHT, EEMD

| Fourier | STFT
A priori A priori A priori Adaptive

Convolution: Convolution: Convolution: : L

) . Differentiation:

Frequency global, regional, regional, local. certaint
uncertainty uncertainty uncertainty ’ y

Energy- Energy-time-  Energy-time- | Energy-time-
frequency frequency frequency frequency
Nonstationary No Yes Yes Yes

Feature Discrete: No
. No Yes Continuous: Yes
Extraction Yes

Theoretical Theory Theory Theory iy
Empirical
Base complete complete complete




