

14th BRAZILIAN COMPUTATIONAL INTELLIGENCE MEETING 3-6 NOVEMBER 2019 , BELÉM , BRAZIL

Forecasting epidemiological time series based on decomposition and optimization approaches

Matheus Henrique Dal Molin Ribeiro Ramon Gomes da Silva Naylene Fraccanabbia

> Viviana Cocco Mariani Leandro dos Santos Coelho

Presentation agenda

- Introduction
- Objectives
- Dataset
- Methodology
- Results
- Conclusion

Introduction

- **Meningitis** is an inflammation of the meninges, membranes that surround the brain and spinal cord;
- In Brazil, meningitis is considered an endemic disease.
- In 2018 have 15,000 cases of meningitis and 3,000 resulted in death;
- Forecasting meningitis cases allows to develop a strategic planning;
- Due to **chaotic behavior**, through the hybridization of ensemble, decomposition and optimization approaches is possible to build an efficient forecasting model.

THE LANCET Global Health Volume 4, Issue 6, June 2016, Pages e370-e377

Seasonal dynamics of bacterial meningitis: a time-series analysis

Dr Juliette Paireau PhD $^{a,\,b}$, A B , Angelica Chen $^{c,\,1}$, Helene Broutin PhD $^{d,\,e}$, Prof Bryan Grenfell PhD f , Nicole E Basta PhD $^{f,\,g}$

https://www.sciencedirect.com/science/article/pii/S2214109X1630064X#fig1

Objective

- This paper proposes a new hybrid approach that combines Ensemble Empirical Mode Decomposition, Quantile Random Forest based ensemble and Multi-Objective Optimization to forecast Meningitis Cases one-month ahead in
 - Para (PA)
 - Parana (PR)
 - Santa Catarina (SC)

Dataset

I 2 years (monthly measures)

STATISTICAL MEASURES FOR THE MENINGITIS NOTIFIED CASES NUMBER FOR ALL STATES.

State	Description	n	Min	Mean	Max	SD
	All data	144	14	37.54	74	10.66
Para	Training	132	14	37.02	74	10.51
	Test	12	25	43.33	62	11.01
Parana	All data	144	63	141.63	561	71.46
	Training	132	63	142.15	561	73.95
	Test	12	97	135.92	222	35.06
Santa	All data	144	35	70.68	235	26.78
Catarina	Training	132	35	70.39	235	27.56
	Test	12	49	73.92	97	16.30

Α в С 0.75 0.40.4 0.50-0.2 ACF 0.5 ACF 40 9 0.25 0.0 0.0 0.00 20 25 10 15 20 25 15 20 25 15 $\mathbf{0}$ 5 0 5 10 0 5 10 Lag Lag Lag

Augmented Dickey-Fuller test PA, PR, SC series are non-stationary (DF = -5.35 - -3.41, p-value > 0.05).

Seasonality in the data (Kruskal-Wallis test) PA and SC series: there is **no** evidence of seasonality PR state series : there is evidence of seasonality.

Methodology

Ensemble Empirical Mode Decomposition (EEMD)

N. E. Huang et al., "The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis," *Proc. Roy. Soc. London*, 454A, pp. 903-995, 1998.
Z. Wu and N. E. Huang, "Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method," *Advances in Adaptive Data Analysis*, Volume 1, No. 1, pp. 1-41, 2009.

Quantile Random Forest (QRF)

It provides information about the full conditional distribution of the response variable, not only about the conditional mean.

Quantile random forests give a non-parametric and accurate way of estimating conditional quantiles for high-dimensional predictor variables.

Methodology

Non-Dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II procedure has three features:

- It uses an elitist principle
- It emphasizes non-dominated solutions.
- It uses an explicit diversity preserving mechanism

 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," *IEEE Transactions on Evolutionary Computation*, vol. 6, no. 2, pp. 182-197, 2002.
https://ieeexplore.ieee.org/document/996017

Roadmap of hybrid framework

Performance measures

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} [y_{i} - \hat{y}_{i}]^{2}}{\sum_{i=1}^{n} [y_{i} - \overline{y}_{i}]^{2}},$$

$$sMAPE = 100 \times \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{(|y_i| + |\hat{y}_i|/2)} \right|,$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2},$$

Statistical tests

• Friedman test and

Nemenyi test post-hoc

critical difference

$$FD = \frac{12n}{k(k+1)} \left[\sum_{j=1}^{k} R_j^2 - \frac{k(k+1)^2}{4} \right],$$

Methodology

Results

Pareto front

WEIGHTS ADOPTED FOR EACH IMF AND RESIDUAL IN THE SIGNAL RECONSTRUCTION.

State	θ_1	θ_2	θ_3	$ heta_4$	θ_5
PA	1.1020	1.0409	1.0151	1.0126	1.0146
PR	1.0904	1.0214	1.0143	0.9798	0.9938
SC	1.0691	1.0162	0.9118	1.1994	0.9892

Results

CONTROL HYPERPARAMETERS (*mtry*) EMPLOYED IN EACH MODEL.

Component/Model	PA	PR	SC
IMF_1	2	4	3
IMF_2	4	4	4
IMF ₃	4	2	3
IMF ₄	4	2	4
Residual	4	3	4
QRF	4	4	2

Results

STANDARD DEVIATION FOR MODELS SE FOR TEST SET.

State	EEMD-QRF	EEMD-QRF-MOO	QRF
PA	1.0500	0.9902	6.0696
PR	2.1544	2.1542	7.2229
SC	1.6042	1.4264	4.3714

Performance measures

PERFORMANCE MEASURES ADOPTED IN THE MODELS EVALUATION.

Training set						
State	Measure	EEMD-QRF	EEMD-QRF-MOO	QRF		
	RMSE	1.3550	1.0825	3.6596		
PA	R^2	0.9882	0.9893	0.8919		
	sMAPE	2.57%	2.08%	4.19%		
	RMSE	4.0243	3.6518	7.6555		
PR	R^2	0.9867	0.9901	0.8552		
	sMAPE	1.93%	2.03%	2.47%		
	RMSE	4.9434	4.4362	7.0872		
SC	R^2	0.9148	0.9317	0.8552		
	sMAPE	6.50%	5.51%	4.04%		
	Test set					
	RMSE	6.0690	6.0346	12.7777		
PA	R^2	0.6693	0.6751	0.0369		
	sMAPE	11.73%	11.57%	23.54%		
	RMSE	17.5855	17.3518	31.8764		
PR	R^2	0.7323	0.7378	0.1869		
	sMAPE	8.24%	7.97%	15.28%		
	RMSE	8.1240	9.6220	15.4407		
SC	R^2	0.8472	0.8628	0.1355		
	sMAPE	9.82%	12.03%	19.73%		

Results observed x predicted values

(a) Observed and Predictions for PA state.

(b) Observed and Predictions for PR state.

(c) Observed and Predictions for SC state

Conclusion

- A hybrid framework combining EEMD, QRF and MOO was proposed;
- EEMD was employed to decompose the series, QRF to forecast each obtained component and MOO to find weights for these components;
- One-month ahead forecasting the meningitis cases in PA, PR and SC states was studied;
- EEMD-QRF-MOO is competitive with 2 cases better than EEMD-QRF and all cases better than QRF model.
- Decomposition and optimization allow to enhance models performance;
- For future works is intend
 - Adopt different combinations of models for EEMD components.
 - Increasing the number of steps ahead to forecasting.

Acknowledgments

Científico e Tecnológico

Apoio ao Desenvolvimento Científico e Tecnológico do Paraná

INTELLIGENCE MEETING

3-6 NOVEMBER 2019 . BELÉM . BRAZIL

Thank you

Comments: HHT, EEMD

	Fourier	STFT	Wavelet	HHT
Basis	A priori	A priori	A priori	Adaptive
Frequency	Convolution: global, uncertainty	Convolution: regional, uncertainty	Convolution: regional, uncertainty	Differentiation: local, certainty
Presentation	Energy- frequency	Energy-time- frequency	Energy-time- frequency	Energy-time- frequency
Nonlinear	No	No	No	Yes
Nonstationary	onstationary No		Yes	Yes
Feature Extraction	No	Yes	Discrete: No Continuous: Yes	Yes
Theoretical Base	Theory complete	Theory complete	Theory complete	Empirical